随着我国机械制造业的不断发展,行星减速器作为一种重要的部件,已广泛应用于各种机械领域,并在一定程度上取代了传统的固定轴减速器。
行星齿轮减速机也用于煤矿设备,如采煤机、料斗和挖掘机。
行星齿轮减速器的特点是同轴传动与输出轴同轴,大大减小了减速器的体积。同时,在传输功率时,减速器可以分配输入功率,大大提高了减速器的承载力。总而言之,与固定轴减速器相比,行星减速器的体积较小。它能驱动电源,效率高,传动宽,范围宽。
随着我国机械设计和制造技术的不断发展,主机对关键部件提出了更高的要求,以获得更优化的结构,更高的可靠性和更好的性能。因此,为了满足机械市场的需要,有必要在此阶段提高减速器的性能。行星齿轮减速机的研究与故障判断。
行星齿轮减速机
1、行星齿轮减速器的结构与故障特征分析
行星齿轮传动系统的基本部件是太阳齿轮,行星齿轮齿条和内齿圈。 根据行星齿轮减速器的具体结构、有许多不同的分类方法。简而言之,可以区分第一次减少,第二次减少,第三次减少和第四次减少。二级减速以上减速器的太阳齿轮采用浮动连接方式。故障机制与信号传输路径和模式有许多相似之处。它的运动形式和自我结构更加复杂。因此,分析一阶行星齿轮减速器作为示例。
在第一级行星齿轮减速器中,太阳齿轮通常固定在驱动轴上,并且多个行星齿轮分别与太阳齿轮和内齿圈啮合,并通过行星齿轮架输出动力或运动。齿轮系的主要缺陷是腐蚀、齿磨损和齿断裂。常见的齿轮故障发生在10%的齿轮表面磨损,31%的点蚀,41%的牙齿被折断,18%的其他齿轮被磨损。经过一段时间的齿轮磨损,很难找到初始齿面磨损。只有当磨耗达到一定的振动信号时,齿轮的啮合频率和谐波幅值才显着增加。
齿轮传动的循环应力一般超过齿轮材料的疲劳极限,在齿轮的根部逐渐出现裂纹,导致齿裂。齿轮故障振动信号通常以齿轮啮合频率和谐波为载频,齿轮轴的旋转频率和双频为调制频率,因此,调制带宽非常高。行星齿轮的载波频率为齿轮啮合频率或倍增器,调制频率为故障齿轮特性频率或乘法器。
行星齿轮减速机
2、行星齿轮减速器的设计方法
行星减速器的尺寸、重量和承载能力取决于传动参数的选择。设计问题是确定给定的齿轮比和输入扭矩的小齿轮数、每齿轮的齿数、齿轮的模数和宽度。由于行星减速器的特殊结构,每个齿轮的齿数不能任意选择,必须根据一定的匹配条件严格计算。
传统的设计方法是先选择行星齿轮的数量,然后根据匹配条件匹配齿。这种方法的结果并不独特。根据结构布置和设计人员定义的经验,可以选择一组齿数方案,然后根据强度计算模型和齿宽等参数进行选择。在确定结构参数时,必须进行大量的计算,才能得到满足性能要求、尺寸合理的方案。因此,利用计算机寻找更好的设计方案具有实用价值。
3、行星齿轮减速器振动信号特征
由于行星减速器传动系统具有旋转和旋转的行星齿轮,振动信号不仅包括太阳轮、行星齿轮、内齿圈和行星齿轮架的转动频率,还包括它们之间的啮合频率。另外,上述频率的倍频与振动信号的其他部分叠加。通常,传感器安装在齿圈上或连接到壳体上以收集振动信号。啮合点相对于太阳齿轮,行星齿轮和齿轮副的位置随行星齿轮架的旋转而变化,因此,改变了啮合点与传感器之间的振动传递路径。
时变传输路径对振动测试信号产生幅度调制效应,进一步增加了信号的复杂性。考虑到行星齿轮系统的这一特性,适用于不同结构的行星齿轮减速器的振动信号模型是进一步分析的基础。国内外许多学者根据行星齿轮减速器的一些特点建立了相应的信号模型和加工方法。
但是,由于行星齿轮系统本身的复杂性,研究人员只采用简化的方法对其进行研究,忽略了许多特征,只是在某一点上进行分析,没有形成完整的系统诊断方法。此外,只有严重的齿轮失效(严重磨损、断齿等)才能识别出早期的失效信号。
行星齿轮减速机
4、行星齿轮减速器故障信号分析方法
根据行星齿轮减速器的结构特点,测量信号通常包含多个频率分量。如何分离故障信号,识别障碍类型是解决这一问题的关键。冯志鹏等人提出了一种基于经验模态分解和行星减速器振动信号调幅特性的频率解调分析方法,提出了基本模态函数的选取原则。分析中应考虑齿轮啮合的瞬时影响因素以及齿轮刚度和相变的影响。在目前的行星齿轮系统中,多级行星齿轮减速器经常用于非常重要的场合,其结构比较复杂。
因此,在齿轮故障诊断中,有必要将基于实时信号处理的时域同步平均法与现代信号采集技术相结合,以提高信号的实时性,进行实时诊断有效的检测。为了提高行星齿轮系统故障预测的准确性,需要采取多种方法。
以上就是上海明质减速机有限公司为大家带来的,关于
行星齿轮减速机的研究与故障判断,希望对大家有所帮助,想要了解更多相关资讯的小伙伴们可以关注我们哦。